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Abstnct The breakdown of conductance quantization in a quanhlm point contact in the 
prescnce of a random long-range impurity potential is discussed. It is shown that in the 
linear response regime a decisive role is played by the indirect backscattering mechanism via 
quasilocalized states aI the Fermi level; this can provide a much higher badwcattering n te  
than any direct backscattering process. For realistic contact lengths (62000 nm) the scanering 
processes prove to be independent, in spite of the coherence of the electron wave. The 
dishbution function of conductance fluctuations is obtained by direct numerical calculations 
as well as being estimated within an analytical model for the first time. It is shown to be a 
seneralired Poisson dishbution. Estimates are made for quantum point contact performance at 
different choices of parameters. In particular. it is better the larger h e  intermode distance is 
compared to the amplitude of the random impurity potential. 

1. Introduction 

The effect of conductance 2e2 /h  quantization in quantum point contacts (QPC, 
electrostatically defined junction in a two-dimensional electron gas in a high-mobility GaAs- 
AlGaAs heteroseucture), first observed in 1988 [l], is still challenging both theoreticians 
and experimentalists [2].  An intriguing feature of the effect is that it is not destroyed by 
elastic scattering, be it impurity scattering or scattering by a contact boundary. 

The insensitivity of quantization to the latter process was explained within the framework 
of the adiabatic approximation [3]. Breakdown of quantization was shown to be insimificant 
as long as the contact shape (i.e., the confining potential induced by the gate electrode) is 
smooth on the scale of Fermi wavelength, AF. The last condition is likely to be me, since 
bF N 40 nm in a clean contact is at least an order of magnitude less than the characteristic 
scale of the gate potential variation [4]. 

The adiabatic approximation yields that different transverse modes pass the QPC 
independently (‘no modemixing’ regime). This provides a sufficient, but not necessary, 
condition for the conductance quantization in a QPC: as was pointed in [4,5], the necessary 
condition is the absence of backscattering. The direct numerical calculations [6] show 
that conductance is quantized even if the intermode mixing is significant. The sum rule 
suggested there to explain this result follows from the unitarity of the scattering matrix of 
the system 171. 

The impurity potential is more likely to produce backscattering. and thus to break 
the conductance quantization, since it is less smooth than the gate-induced potential. Many 
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theoretical papers dealing with impurity scattering in QPC [S, 9, 141 have used the Anderson 
model with on-site disorder. This approach gives a qualitative understanding of the process, 
but its results cannot be directly applied to real GaAs planar structures, where the Coulomb 
impurity potential certainly is not sharp on the scale of A,= [4, IO]. In fact, the numerical 
calculations made for this realistic case [4] show that its scale of variation is intermediate 
between A,= and the size of the QPC itself. 

The effect of such a slowly varying random potential (‘soft disorder’) on the performance 
of a QPC was investigated in [4, 101. Its main feature is the negligible rate of scattering 
processes with large momentum transfer. Glazman and Jonson 1101 built up a theory 
for the electrical conductivity through the QPC with soft disorder and showed that the 
direct backscattering occurs mainly in the largest-number transverse mode (i.e., the one 
with the minimal longitudinal momentum). [4] 
demonstrated that the long-range impurity potentials may produce quasilocalized states 
inside the channel [ I l l .  Once it has appeared, such a state provides an effective indirect 
backscattering mechanism. Indeed, the quasilocalized state contains both ‘forward’ and 
‘backward‘ waves, so that the transition between the electronic states propagating in opposite 
directions via the quasilocalized state does not demand a significant momentum transfer. 
Thus, in an appropriate impurity configuration, indirect backscattering (formally due to 
the second-order process) can have much larger cross-section than the (first-order) direct 
backscattering. The probability of finding such a configuration of impurities, of course, must 
be investigated as well. Recently Gurvitz and Levinson [I21 built up a theory of resonant 
reflection and transmission in a QPC with a single attracting impurity at the contact’s 
bottleneck. They have investigated the case when the first mode is open and a second 
one is being opened, thus creating a single resonant level at the top of the potential well. 
They obtained a Breit-Wigner-type expression for the correction to the conductance at the 
transition region from the first to second conductance step (as a function of the Fermi 
energy); its sign depends on whether there takes place tunnelling into the resonant state 
(conductance enhancement) or scattering into it  (suppression). 

In this paper we study numerically and analytically the indirect backscattering effects 
on the electrical conductivity of a QPC, in the presence of the screened Coulomb potential 
from randomly distributed charged impurities [13]. 

In section 2 we find the corresponding correction to the current, supposing that there 
are quasilocalized states in the QPC, and that the impurity potential is soft, so that the 
tunnelling processes to and from these states can be neglected, and their energetic spectrum 
is dense. We show that the correction, given by a Breit-Wigner-type formula, suppresses 
the current. If the quasilocalized states exist close to the Fermi surface, this is really the 
leading contribution from the impurity scattering in a QPC. The result is valid for the bulk 
of the conductance step against gate voltage. 

In section 3 we investigate the stochastic properties of arising conductance fluctuations, 
as a random variable determined by the specific impurity arrangement. The distribution 
function of the conductance fluctuations is shown to be of Poisson type and is explicitly 
determined by the tunable parameters of the QPC: its length and number of open modes (i.e., 
conductance). This allows us to make more detailed predictions about the QPC performance 
than mere knowledge of the fluctuation dispersion. 

In section 4 we estimate the theory parameters based on the quasiclassical description 
of the random impurity potential, 

In section 5 we present the numerical calculations that provide the basis for the present 
work. The impurity potential was calculated in a‘self-consistent way using the Thomas- 
Fermi approximation. The quantum contact was modelled by imposing upon it a parabolic 
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confining potential. The conductance was calculated in the linear-response limit by a 
standard transfer matrix method for different contact lengths and for different realizations of 
the impurity potential. (Different realizations of the random impurity potential in the QPC 
were obtained by changing the position of the confining potential with respect to a fixed 
random potential profile.) 

An empirical distribution function of conductance fluctuations was thus obtained, and 
we compare the results of the numerical calculations and theoretical predictions in section 6. 
They are in very good agreement. This allows us to conclude that the leading mechanism 
of conductance quantization breakdown in QPCs is the indirect backscattering, and it allows 
us to find estimates of the QPC performance. 

Figure 1. The mcdel of a quantum paint confact. The impurity potential in a 2DEG layer. The 
impurity density is IO” em-2. Isolines are drawn through 1.3 x lO-3 eV. The white line shows 
the gate equipotential Ujo) (x ,  y )  = E F  (unperturbed contact shape) far L = 8W nm. 

2. Indirect backscattering in a quantum point contact 

In accordance with what is now the standard approach [3, 101, we start from the adiabatic 
mcdel of a QPC, where the transverse modes are well defined; the deviations will be 
regarded as a perturbation (see figure 1). The Hamiltonian of the electron contains the 
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following terms: 
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H = -” 2m* ($ + $) + U&, y )  + V ( x ,  y ) .  

Here V,(x,  y )  is the confinement potential, shaping the junction in a two-dimensional 
electron gas (2DEG). It proves to be convenient to include the smooth component of the 
impurity potential as well. The rest of the impurity potential, V ( x ,  y), is regarded as a 
perturbation, e.g., leading to intermode mixing. It is also a soft potential, which does not 
lead to large momentum transfer. 

The potential U& y )  is supposed to be a slow function of the coordinates. Then the 
wave function of an electron with energy E inside the QPC can be expanded as follows [3]: 

The adiabatic eigenfunctions are defined by 

Y; E )  = 4mm(x. y)~m,o(x; E )  (3) 

where the transverse eigenfunction corresponds to the mth eigenvalue of the transverse 
Hamiltonian: 

and the longitudinal eigenfunction satisfies the equation 

We can distinguish different groups of electronic states in the QPC, according to the 
behaviour of ~ ~ , ~ ( x ;  E )  in the presence of the effective onedimensional potential E m ~ ( x )  
(see figure 2). They are denoted by the index or = -2, -1, . . . ,2.  

The states of special interest for us are the quasilocalized ones (or = 0). They appear if 
the effective potential E , l ( x )  is a nonmonotonic function. Note that for each quasilocalized 
state in the mth mode, generally, there exist propagating states with the same energy in some 
mode of lower number (figure 2). This is the reason why these states are quasilocalized 
(due to the smoothness of the potentials in the QFC we can safely neglect another reason 
for this, namely, the tunnelling decay). 

The coexistence of propagating and quasilocalized states (P states and Q states) at the 
same energy is characteristic for QPCs and gives rise to indirect backscattering in the QPC. 

The correction to the current due to backscattering can be written in a standard 
way [3, 171: 

AI = -- d E  (nF(E - P I )  - nF(E - (4)) J ( E )  (6) 2‘e’ h s 
In the linear-response limit this yields the correction to the conductance, 

2e2 

h 
AG = - -J (Ep) .  
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Figure 2. Classification of electronic stales in a QPC. E,,,I(x), effective potential in mth mode 
(1D subband). (or = -2), reflected states incident from the l e k  (or = -1). propagating states 
incident from the left; (or = 0). quasilocalized states; (or = 1). propagating states incident from 
the right; (a = 2). reflected states incident hom the right. 

The summation in (7) is taken only over N propagating (open) modes in the quantum point 
contact, and rnm(E) is the probability amplitude of the electron incident from the right in 
the mth P mode (a = 1) to be scattered back, to the nth P mode with LL! = -1: 

(9) 
Here qgi(x, y: E) is the scattered wave, corresponding to the unit wave with energy E, 
incident from the right in the mth mode, @m.l (x .  y; E). This function can be found from 
the LippmannSchwinger equation [18]  (T = ( x ,  y ) ) :  

rnm(E)S(E -E ' )  = (@~,-I(E'), %$(E)) I 

qEi(r; E) = @ m . l ( r : E ) + ~ d ~ ' G R ( r , ~ ' ; E ) V ( ~ ' ) @ ~ , t ( ~ ' ; E ) .  (10) 

In this equation we have introduced the exact retarded Green function in the presence of 
the perturbation V ( x ,  y). for which we can write 

(11) G R ( ~ ,  T';  E) = G;(T, T'; E) + dT" G,"(T, T"; E)V(r")G; ( r .  T';  E )  + . . .. s 
The unperturbed retarded Green function is given by 

The summation is taken over all the quantum numbers of electronic unperturbed 
eigenfunctions. 

Inserting equations (10). (11) into (9) we find the first two nonvanishing terms: 

rnm(E)G(E - E') = ( @ " , - , ( E ' ) . G ; ( E ) v ~ ~ . I ( E ) )  
+ ($~,-I(E')- G;Q)VG;(E)V@m,l (E)) .  (13) 
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We neglect the higher-order terms which implies, in particular, that the scattering processes 
by different quasilocalized levels do not interfere. This approximation is surely valid if 
L (< lz , ,  !roc, where ltrp lloe are the transport and localization lengths, respectively. The 
following results show that this condition holds in the case of realistic quantum contacts. 

According to our initial assumptions, the perturbation potential is soft. This means that, 
generally, its matrix elements between the P states propagating in opposite directions (i.e., 
with o = +I and - I )  are negligible, while the matrix elements between the P states and 
Q states (or = f l  and 0) are nonzero. Since the retarded Green function (12) contains the 
products of electronic eigenfunctions with the same indices a, equation (13) reduces to 

A M Zagoskin et a1 

r n , ( ~ ) ~ ( ~  - E') = ( $ n . - , ( ~ ~ ) ,  G,R:-'(E)vG,R:O(E)V$,,,(E)) . (14) 

The superscripts in the retarded Green functions show which part of the expansion (12) we 
keep. 

The formula (14) shows that the backscattering from the incident (m, l )  state to the 
(E, -1) state occurs through the set of quasilocalized states (described by part of the retarded 
Green function, denoted by G f o ( E ) ) .  

After some standard transformations, we obtain that 

Here we have introduced the one-dimensional electronic density of states (DOS) at infinity, 
v ( E ) ,  to account for the propagating modes, and denoted the matrix elements of the 
perturbation potential by 

(n;-~;ElVlq;O;~) = S d r t . . , - l ( T ; E ) V ( T ) ~ ~ , ~ ( T ; t ) -  (16) 

The summation is now taken only over the quasilocalized states; as such, they have a 
discrete specbum, so that E is adiscrete variable; q is the number of transverse mode where 
the localized state appears. 

Equation (15) contains the unperturbed retarded Green function of the electron in 
localized states, which thus have an infinite lifetime. The perturbation, mixing different 
states, makes the Q states metastable, and instead of the io term there appears the spectral 
function irq(E, ~ ) / 2  [18] (the accompanying shift of the energy levels can be accounted for 
by changing the summation variable 6 ) .  The spectral function is given by 

(of course, a Q state can decay only into P states). 
lrnm(E)lz. Note 

that the matrix elements corresponding to the Q states from different subbands (q # 4') or 
different impurity potential wells in the same subband (w # w', where w is the label of the 
potential well) enter the expression for rnm(E) with their phases, which are uncorrelated. 
This means that the main contribution to J ( E )  will be given by the diagonal terms in the 
corresponding sum, that is, as it is easily seen, 

The correction to the current (6) is expressed through J ( E )  = 
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Here E ,  E' are different quasilocalized states in the same potential well of the sane 1D 
subband. 

This expression can be further simplified, if the distances between the energy levels in 
a potential well are large comparatively to their width: At,.,, >> r. Then in the sum over 
E ,  E' in (18) the contribution of the terms with E = E' is dominant, and we obtain 

The result has a typical Breit-Wigner form for a set of independent resonant levels [ 181, 
which is the case under the assumptions made. 

Though the energy specmm of the Q states in a single potential well is assumed to be 
rarified, in a long contact, where many potential wells with random parameters appear, and 
due to the fact that each Q state has a finite width r, the spectrum of these states for the 
whole system is dense enough to be described in a continuous approximation. Then we can 
introduce the density of localized states in the qth mode, & ( E ) ,  and rewrite (19) as 

In the linear-response limit this directly gives the correction to the conductance: 

We have discussed only virtual (including resonant) scattering to and from the Q states. 
In reality, when the finite driving voltage U is applied, there exist the processes of red 
elastic and inelastic (electron<lectron or electron-phonon) scattering between Q and P 
states with energies in the interval eU around the Fermi energy. The contribution of these 
states to the scattering is proportional to e U .  We can safely neglect their existence in the 
linear-response limit eU + 0, when the contribution from the Q states outside the eU band 
(in the interval of width - r ( E F ,  E F ) )  is dominant. These kinetic processes, of course, 
must be taken into account if we would like to discuss the nonlinear response of a QPC. 

3. Statistics of Conductance fluctuations 

Now let us discuss what the formula (21) yields. The conductance quantization breakdown 
can be characterized by the relative difference between the actual conductance against gate 
voltage dependence, G(V,), and the ideal one, averaged over the nth step (figure 3, inset) 
(reduced conductance deviation): 

Inserting here (21), we get 

where the nth mode opens at the gate voltage equal to V,(n). and U q ( E p )  and r 9 ( E F ,  E F )  
are both dependent on V,. In the last equation we can instead of integrating over the gate 
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Figure 3. Conductance against gate voltage curves for different realizations and conlact lengths 
(see text). Parameter Z = kpb(0)jn. (a) Contact length 1200 nm (b) 8W nm. (c) 6M) nm. 
Inset: quantization breakdown parameter g; it is eqwl to the ratio of the area of the dmhed part 
of the conductance step to its total area 

Z 

voltage integrate over the (determined by V8) transverse subband energies at some point 
xo of the constriction, Eq. l (xo)  = E9.1. The integral evidently does not depend on X O .  

The intermode distance, AE,,,(xo) = E4+1,1(xo) - E P . ~ ( x o )  = AE,J (see figure Z), 
weakly changes when the gate voltage changes between V,(n) and V8(n + 1). (The direct 
measurements show that the main effect of the gate voltage is an upward shift of the potential 
in the centre of the constriction [ZO].) In the realistic model of a parabolic confining potential 
the intermode distance also does not depend on the mode number. In long smooth contacts 
it is weakly dependent on the longitudinal coordinate as well. Its magnitude is of the order 
of EF,”,,, where N,, is the maximum number of transverse modes able to pass the 
constriction (which is the maximum number of conductance 2 e 2 / h  steps which can he 
observed in a given QPC). This enables us to simplify equation (23): 

The functions under the integral are now functions of the corresponding kansverse energies. 
If localized states have an almost continuous spectrum (which is consistent uzith our 

initial assumption of the impurity potential being smooth), the main dependence on the 
bottom energy of the mode enters the DOS, not the level width, which is a smooth function 
of energy in the scale of A E l .  Therefore, we can take it out from the integral. Then we 
obtain the following formula: 

Here we explicitly show that, as follows from the definition (17). IIq(EF, E F )  depends on 
the number of propagating states in the contach that is, on the step number n. 
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Assuming that the quantity z r ( E F ,  E F ;  n)/2AEl is slightly dependent on the 
realization of the random potential, we can substitute it by its ensemble average value, 

which is proportional to the number of open modes, n (see (17)). 
The integral over energy in (25) has the sense of the number of localized stufes in all 

1D subbands in the contact. which pass the Fermi level as we sweep V, across the nth 
conductance step, NQ. We denote its average over possible realizations of the random 
potential by K L  ( L  is the length of the contact): 

or 

Here (Nq(E)) is the ensemble average of DOS per unit length in the qth ID subband over 
possible realizations of the random impurity potential. 

The expression (25) acquires a clear physical meaning. The correction to the contact 
conductance due to indirect backscattering is a sum of contributions, A&, (see equation (26)) 
from independent Q states (in each 1D subband): 

g, = N Q A ~ .  . (29) 
In the limit of infinitely long quantum contact we get 

since the density of states is the self-averaging quantity [19]. But in the contact of finite 
length the number of appropriate Q states deviates from its ensemble average, (NQ) = K L ,  
and thus the conductance of the QPC will fluctuate from realization to realization. In order 
to predict the performance of a single QPC, we need the distribution function of these 
fluctuations, dependent on such parameters of the contact as its length L and number of 
open modes n. 

On a length scale large compared to the size of the localized state (correlation radius 
of the impurity potential of order 100 nm), we can regard these states as independently 
r d o m l y  distributed along fhe channel, with occurrence per unit length IC. The probability 
of finding p such states along the total length L of the contact is then given by the Poisson 
formula [21]: 

n ( N )  = ( K L ) ~ ~ - ' ~ I N ! .  (31) 
Since each state gives the same contribution to the conductance, A& = yn ,  then the 

probability density of the conductance deviation on the nth step 

The reduced conductance deviation acquires the discrete set of values g, = 
yn ,  2yn, 3 y n , .  . ., depending on the number of relevant Q states in the contact. 

The shortcoming of the above formula (discrete set of values of g.) follows from our 
simplifying assumption that each Q state has the same width ( r (EF ,  E F ) ) .  In reality, this 
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quantity also fluctuates, so that the variable g. is rather a continuous one. Nevertheless, as 
the numerical calculations show, this expression provides a fairly good description of the 
performance of a QPC (see section 6).  

4. Estimates of the theory parameters 

We see that the statistics of the conductance fluctuations due to indirect backscattering is 
determined by the following parameters (see equation (32)): effective length of the QPC, 
L,  number of open modes, n, average ID density of Q states at the Fermi energy per 
unit length, K ,  and average conhibution to the conductance from each Q state, Ag. Since 
the latter quantity is proportional to the average scattering rate from these states to the 
propagating ones (see equation (26)), it is more convenient to use the set of four independent 
parameters, L ,  n ,  K and y .  

The first two are runable parameters, which can be changed by changing V, andlor 
gate configuration, while the other two are essentially determined by the properties of a 
given GaAs structure (density and charge of impurities, spacer thickness etc), or, in short, 
by the impurity potential in the system. We need some numerical estimates for these 
intrinsic parameters, y and K. They can be obtained from such characteristics of the 
impurity potential as its correlation length, I v ,  and dispersion, U' = (V&), which are both 
contained in the correlation function K ( z )  or spatial spectral density S(k) (see [19]): 

A M Zagoskin et a1 

K ( 2 )  = (Vjmp(0)Vjmp(z) )  S(k) = ddz  K(r)e-ik'". (33) s 
(We put to zero the average value of the impurity potential.) 

First we estimate y .  Since ( r ( E F .  E F ) )  E 2 r r n 2 ~ [ ( Q l V [ P ) 1 ~  (see (17)), then 

Here l(QlVlP)12 is the average square modulus of the impurity potential between 
quasilocalized and propagating states. Evidently, it is of the order of S(Akpp)&/jo, where 
Akpp is the difference of longitudinal wave vectors in P and Q states, (Y is the reduced 
matrix element of impurity potential between different transverse modes (a Y 0.1 according 
to our numerical calculations, see section 5), and /O Y lv is the average longitudinal size of 
the quasilocalized state (the latter factor appears because the wave functions of Q states are 
normalized to unit probability, while the P states are normalized to unit probability current 
along the axis of the QPC). In accordance with our basic assumptions, for the relevant (Q,P) 
matrix elements of the impurity potential the longitudinal wavevectors are almost the same: 
Akpp << k F .  Assuming the exponential potential decay, we can take 

I(QlVlP)lZ cz S(0)e-ZA'PQ'VaZ//V = S(0)e -4"(~Y~Af) (Arp~/ r , ) ( yZ / Iy  < U ~ I ~ ( Y ~ ,  (35) 
This gives the following estimate for y :  

We use here the formula for 1D DOS of propagating states, v = I/nhvF.  
If we insert into (36) the values consistent with our numerical calculations, 01 = 0.1, 

A F  = 40 nm, Iv = 100 nm, U*  = 0.1E;.  A E l  = 0 . 3 E ~ ,  then we obtain y < 0.15. This 
is a proper order of magnitude estimate, though higher than the value that follows from the 
numerical calculations (see section 6). The reason is that, putting AkpQ = 0 in (35), we 
overestimated y .  To eliminate this discrepancy, it is sufficient to take AkpQ/kF Y 7%. 
which is quite reasonable. 
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One useful remark: we can approximately present the impurity potential as a sum 
of potentials of identical potential centres, v ( x ) ,  with density nimp randomly distributed 
in the conducting plane (see. e.g., [19]). [21] 
S(k) = ni,lu(k)12. Therefore, the parameter y is proportional to the impurity density. 

In order to estimate the other intrinsic parameter, K, we use the quasiclassical, or 
Thomas-Fermi, approximation for the average density of localized states in the 1D subband, 
(N(E)) (see [19]), leading to the following approximate expression: 

Then by the Carson theorem we get 

D-lp(z) is the parabolic cylinder function. As a matter of fact, the validity limits of the 
latter expression are determined not by the quasiclassicity conditions, but by much looser 
ones [19]: 

(38) A: 
1; . IE - E91(x)I >>U. EF- 

Substituting it into the definition of K (28), we find 

The latter formula can be identically rewritten as follows: 

Here r (a ,  z) = 1; dy y'-ue-y is the incomplete gamma function. 
With the same choice of parameter values as above, we find that K N r 

t i  (5, 2 ) l . I ~  = 0.269/A~ m 0.006 IUIl-'. 

5. Numerical calculations 

The basis for OUT hypothesis about the statistics of conductance deviations from ideal 
quantization is the numerical calculations of QPC conductance for different realizations 
of soft random impurity potential, at different contact lengths and for different number of 
open modes. 

The model used for simulation of a heterostructure device is very similar to the one 
considered in [4]. Donors are assumed to be fully ionized and distributed randomly through 
the donor layer. We restricted donors to a plane which should be considered as the middle 
of the donor layer. In our calculations all the donors in the n-type A1,Gal-,As-doped 
layer have the same height h = 30 nm above the 2DEG. The electrons are treated as a 
two-dimensional layer of 10 nm thickness, which is much smaller than other relevant length 
scales. The positions of the impurities were generated by the uniform random number 
generator on the square 1290 x 1290 nm'. We assumed periodic boundary conditions, i.e. 
this square was continued periodically in all directions in the 2D plane. In order to avoid the 
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occasional appearance of too dense clusters of impurities in the donor plane the distribution 
of impurities has been ‘relaxed’, namely, we did not allow the appearance of more than 
five impurity atoms at the area 11% where n is the 2D concentration of impurities. For 
the realistic concentration of impurities, n = IOi2  one must discard not more than 
5-10% of impurities. The potential of a single impurity was taken in the following form: 

A M Zagoskin et al 

e 
EJ(+ - T ; ) ~  + hZ 

U(T -Ti) = (41) 

where E ( d 3 )  is the static dielectric function of GaAs, T is the position vector in the 
2D plane, and vi is the coordinate of the ith impurity. Since we did not want to be too 
specific in modelling any definite heterosbucture, we did not take into account the image 
term considered in [4]. 

The potentials of the impurities were summed directly. The numerical calculations 
show that the summation of the potentials of impurities situated within the radius I T - T ; ~  < 
r,,,, = 10h gives the resulting potential with a good precision. For the rest of the plane the 
summation could be substituted by integration over a plane with homogeneously distributed 
charge. This gives a constant term, which can be dropped since we are only interested in 
the fluctuations of the impurity potential around its average value. Therefore, we choose the 
average value of the summed potential as a point of reference for the energy, i.e. we take 
( X m p )  = 0. Further increase of rmmal does not give any significant change for the potential 
fluctuations defined in such a way. 

The amplitude of fluctuations of the unscreened impurity potential proves to be too large, 
for a realistic concentration of impurities n - iot2 being a few times greater than the 
Fermi energy (of the order of lo-* eV). This means that the screening of this potential by the 
electrons in the 2DEG should necessarily be taken into account. For a qualitative estimation 
of this effect we used the way proposed in [4]: the Thomas-Fermi approximation, which 
is applicable in the case of slowly varying (on the scale of h ~ )  impurity potential, i.e., our 
case. The density of electrons is then given by the local equation 

where p is the chemical potential, and KO, is a sum of the unweened impurity potential 
and the induced potential from the electrons in the ZDEG, 

X n d  is related to nind by the Poisson equation. For a fixed chemical potential equations (42) 
and (43) give a possibility of finding the total potential V,,, in a self-consistent manner. One 
must keep in mind that the experimentally observed Fermi energy should be measured from 
the average total potential, namely, one more equation should be added to this self-consistent 
scheme, 

Here (VIot) is the average total potential, EF is considered as a fixed parameter given by the 
experiment, p is the ‘bare’ chemical potential. It shows the degree of filling of the system 
by electrons and varies from iteration to iteration. Obviously, this system of equations 
has a single self-consistent solution. The numerical calculations show that for n - 10l2 
cm-z and EF zz lo-’ eV this solution is achieved when the system is almost completely 
filled by the electrons, i.e., for most of the points in the 2D plane nind is nonzero and 
the resulting potential fluctuations are smaller than (or of the order of) the Fermi energy, 
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V,,,, - (Vl0,) < EF (see figure 1). The characteristic scale of the change of the potential 
fluctuation is of the order of 1 W 2 0 0  nm. 

The calculations of the potential were made with a crude mesh in the 2D plane. To solve 
the scattering problem by the standard transfer matrix method, a finer mesh is desirable, 
and the potential was therefore interpolated by the cubic splines when necessary. 

In all these considerations we did not take into account the self-consistent effects of 
redistribution of electrons in the constriction due to the gate voltage. Nevertheless, it is 
clear that such effects could be very significant, since they could enhance the potential of a 
single impurity located in a bottle neck because the concentration of electrons in this area is 
lower than the average one, and screening is suppressed (impurity denudation effect). Such 
an effect increases the potential fluctuations at the bottle neck and can change significantly 
the whole behaviour of the conductance (locking the channel) [4 ] .  The question of how this 
effect of just a few impurities located at the narrowest place may show up in the statistics 
of conductance fluctuations is still open. We plan to discuss such a challenging subject 
elsewhere. 

In order to obtain the transmittance and reflectance matrices we solved the 2D 
Schrodinger equation rewriting it in matrix form by the standard transfer matrix method 
with the proper boundary conditions. In order to model the gate voltage we used a parabolic 
potential, as in [6 ] ,  

where q = n k F / 4 ,  and 

b(x )  = bm - ( b ,  - bo) sin*(nx/L) - L / 2  < x < L / 2 .  (46) 

We chose the parameters bo = 10 nm and b ,  = 170 nm, i.e., the maximum number of the 
modes passing through the constriction is eight, for the realistic h~ = 42 nm. 

As long as we are interested mostly in long constrictions (of length 600 nm and longer) 
this impurity scattering term will be dominant in comparison with effects of changes of the 
width b(x)  along the constriction, a case thoroughly considered by Brataas and Chao [6] for 
short contacts. In the bulk of our calculations we neglect them. Because the most important 
region for the breakdown of quantization lies near the bottleneck, we multiply the impurity 
potential inside the contact by the factor sin*(nx/L). This gives us the freedom not to care 
about changing the boundary conditions for any realization of the potential. The number of 
entering modes is always constant. 

The statistics of conductance deviations in quantum contacts can be obtained either (i) 
by generating the impurity potential (with the self-consistent procedure) for each realization 
of the constriction, or (ii) by moving the centre of the contact (possibly also changing the 
direction of the axis of the contact) over the plane with the impurity potential obtained in 
a self-consistent manner only once. The second way is surely less time consuming and, 
therefore, is the one we use. 

We performed numerical calculations for contacts of three lengths (600, 800 and 
1200 nm) for 625 different realizations of impurity potential, moving the centre of the X- 
oriented contact on the square of 1290 x 1290 nm2, with the periodic boundary conditions 
described above. 

We also calculated the conductance of very long QPCs (up to 10000 nm) for several 
realizations. 
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6. Analysis of the results 

The results of the calculations are shown in figures 3 , 4  and 5. Typical conductance against 
gate voltage curves are shown in figure 3. Curves A correspond to an impurity-free contact. 
The centre of the contact lies at the same place for all the curves B (at a minimum (valley) 
of the impurity potential) and C (at a maximum (hill)). Evidently the C curves demonstrate 
better quantization than the B curves, for the same contact length and step number. This 
agrees with OUT statement that the indirect backscattering is a more effective mechanism 
of quantization breakdown in QPCs. The quantization quality becomes poorer for larger 
contact length and higher step number. 
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Fiyre  4. Conductance against gate voltage curves for three different realizations for the contact 
length L = 10000 nm (see text). The random polential has been generated on the rectangle 
1290 x 12900 nmz for these calculations. 

The conductance against gate voltage curves in a very long QPC ( L  = I0000 nm) for 
three different realizations are shown in figure 4. We would like to note here that no trace of 
localization in the system is detected. On the other hand, the conductance plateaus (except 
the first one) are totally destroyed at this length. 

In order to obtain more convincing proof of our theory, the statistics of conductance 
fluctuations was investigated. The average conductance deviation from the ideal 
conductance step, g, was calculated in 625 realizations for each step (n = 2,3, . , . ,6 )  
and each contact length ( L  = 600, 800, 1200 nm), and the empirical distribution function 
was obtained: 

P m p ( g ) J g  = N ( P  Sg)/625 (47) 
where N ( p  6g) is the number of realizations for which p 6g < g 4 (p+ I )  6g. In the actual 
calculations Sg = 0.02. 

Since the contact has a finite length, the deviation g is finite even without impurities due 
to the geometric step smoothening [221; it is larger the shorter the contact is. Therefore when 
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calculating g, we have subtracted from it the corresponding value of g for the impurity-free 
case. 

The average deviation increases with the mode number and the contact length. The 
empirical distributions are essentially asymmetric. Some of them have a tail stretching into 
the negative-g region. This means that in some cases the impurity potential can make the 
contact more transparent in comparison with the case without impurities. There may be 
two mechanisms for this transparency growth. First, there may occur tunnelling through 
the localized states in the transition regime, which enhances the contact transparency 1121; 
second, the random impurity potential may effectively lessen the aperture of the contact, 
thus making the conductance steps sharper and enlarging g [22]. Both mechanisms are 
consistent with the fact that the negative tails disappear for larger contact length andlor step 
number, and both processes are likely to occur in different random potential arrangements. 

The values of g obtained from the numerical calculations are not quantized, as the 
expression (32) implies. This is, as stated above, due to the fact that the .u.idths of different 
quasilocalized states are not exactly the same. Nevertheless, by interpolating this formula 
to noninteger values of g we achieve a strikingly good description of the numerical results: 

(48) 

This result can be easily understood, if we take into account that the contribution of each 
single Q state to the correction to the conductance is  small enough (a few per cent of 
the total effect, see below), so that a comparatively large number of indirect backscattering 
processes is necessary to obtain the average effect in the QPC. Then the discrete distribution 
(32) almost coincides with its continuous interpolation (48). This is more true, the longer 
the contact is. Indeed, the fitting of the two curves is better for the larger values of L (see 
figure 5). 

Figure 5. Statistics of conductance fluctuations in QF'Cs (see text). (a) Contact length 1200 nm, 
(b) 800 nm (c) 600 nm. 
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The solid lines in figure 5 are the least-squares fits of equation (48) to the empirical 
distribution. The dots on these lines indicate the points where g is an integer multiple of y n  
(according to (32)). We use the same value of the parameter K = 1/320 nm-I = 0 . 1 3 / h ~  
for all the curves, while the parameter y varies (the mean square error of the fitting is in 
the most cases practically the same as if we varied them both independently). The choice 
of K agrees very well with the estimates of section 4 (K FC: 0.269/1~ FC: 0.006 nm-I), up to 
a factor of two. This shows that the effective contact length where the scattering occurs is 
of the order of L/2, i.e., coincides with the length of its bottleneck part (see figure 1). 

Table 1. Parameter y as determined by the l e ~ ~ t - s q u x e s  fitting of equation (51) to the numerical 
data for different contact lengths L and step numben n. Parameter K is kcpt equal to ID20 nm-’ 
for all L. n. 

L(nm) n = 2  n = 3  n = 4  n = 5  n = 6  p ( L )  

600 0.019 0.018 0.018 0.017 0,016 0.018 
800 0.016 0.017 0.017 0.016 0.015 0.016 

1200 0.014 0.014 0.014 0.013 0.012 0.014 

?(U) 0.016 0.016 0.016 0.015 0.014 ( y )  =0.016 

The values of y are shown in table 1. They change insignificantly with L and n, and 
are in a good agreement with the estimates of section 4. The theoretical curves provide a 
very good description of both the position and magnitude of the distribution peak, as well 
as of its large deviation tail. 

It is noteworthy that the width of the resonant peaks in the G(V,) curves (figure 3) 
agrees with our estimates of the resonance width r E y n A E l  ( A E l  being o f  the order of 
the step width). 

The knowledge of the distribution function of conductance fluctuations allows us to 
obtain more accurate criteria of good performance of a QPC, e.g., to predict the probability 
for a QPC of a given size, realized in the GaAs structure with given properties, to have a 
certain number of well defined conductance steps, 

The analysis of the theory parameters y and K shows that for different experimental 
situations they can be estimated as follows: 

nimp 
no 

y N 0.016- 

Here njmp. AEL are the actual parameters of the system, and no = 10” 
4.1 meV [23] are the model parameters in our calculations. 

AEA,, = 

The simplest criterion of the QPC performance is given by the average deviation (see 
(32)) 

(g.) = KynL N 5 x 1 0 % ~  (nm). (51) 

For the channel length L = 600 (800, 1200) nm and for a criterion of total quantization 
destruction (g) = 0.5, this gives nmaz e 17 (13, 8), respectively. The analysis of 
conductance curves shows that the quantization is really destroyed at lower values of 
(g) Y 0.2, i.e. nmax 7 (5, 3), which is close to what we see in figure 3. 
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The transport and localization lengths can be estimated from (5 1) as follows: 

This leads to the following results: for n open modes I , ,  20000/n (nm); lloc 2 
20000 (nm). These values are much larger than experimentally reasonable contact lengths; 
they justify our theoretical approach of section 2. 

In the recent experiment 1161 quantized conductance was observed in an InAs/AlSb 
ballistic constriction with channel length 1000 tun. Up to eight conductance steps were 
detected. Koester ef al [I61 suggest that the much better performance of their device 
compared to ones utilizing GaAs/AI,Gal-,As heterostructures is due to a higher ratio of 
interlevel energy spacing to the amplitude of the impurity potential fluctuations. This is 
in complete agreement with OUI theory, since the density of quasilocalized states (and the 
parameter K of the theory, see equation (40)) exponentially drops with growing A E l / o .  

7. Conclusion 

In conclusion, we have investigated the effects of electronic scattering by the soft impurity 
potential in quantum point contacts both with use of an analytical model and by direct 
numerical calculations. 

We have shown that the decisive mechanism of conductance quantization breakdown is 
due to the indirect backscattering of carriers via quasilocalized states at the Fermi level. For 
realistic contact lengths they can be described in terms of independent scatterers, though the 
electron propagation is coherent. This is due to the smoothness of the scattering potentials, 
leading to very large scattering and localization lengths. 

The performance of the quantum contact is shown to be strictly dependent on the ratio 
of the intermode distance to the amplitude of the random impurity potential (the larger the 
better). 

For the first time we have obtained analytical and empirical formulas both for the 
conductance deviation due to this process and for the probability distribution of these 
deviations in an ensemble of contacts with realistic potentials. The latter has proved to 
be a generalized Poisson distribution. 

The pammeters of the distribution obtained numerically agree quite well with analytical 
calculations based on general assumptions, thus confirming their applicability to the case of 
quantum transport through the QPC in the presence of the random impurity potential. 

Acknowledgments 

We are grateful to Mats Jonson and Ilya Krive for huitful discussions. lhis work was 
supported by NFR and NUTEK. 

References 

[ I ]  van Wees B I, van Houteu H, Beenakker C W I, Williamson J G. Kouwenhoven L P, van der Marel D and 

Wharam D A, Pepper M, Ahmed H, Fmst J E F, Hasko D G .  Peacock D C. Ritchie D A and Jones G A C 
Foxon C T 1988 Phys. Rev. Le!!. 60 848 

1988 3. Phys. C: Solid Stale Phys. 21 L209 
[Z] Washbum S and Webb R A 1992 Rep. Prop. Phys. 55 1311 
[3] Glazman L I, Lesovik G B, Khmel'niLskii D E and Shckhter R I 1988 Pis'm Ur Ekp.  nor. Fiz 48 218 

(Engl Transl. IS91 JETP Let!. 48 238) 



6270 A M Zagoskin et a1 

[4] Nixon J A and Davies J H 1990 Phys. Rev. B 41 1929 
Laughton M 1. Barker J R, Nixon I A and Davies I H 1991 Phys. Rcc B 44 1150 
Nixon 1 A. Davies I Hand Baranger H U 1991 Phys, Rev. B 43 12638 

[51 Biittaer M 1990 Phys. Rev. B 41 7906 
[6] Bntaas A and Chm K A 1993 Mod Phys. Lett. B 7 1021 
[7] Zagoskin A M and Shekhter R I 1994 Phys. Rev. B 50 4909 
[SI Song He and Das Sarma S 1993 Phys. Rev. B 48 4629 
[9] Maslov D L. Barnes C and Kirczenow G 1993 Phys. Rev. Lett. 70 1984 
[IO] G l m a n  L I and Jonson M 1991 Pkys. Rev. B 44 3810 
[ll] They are only quasiloCalized. since their total energy can be equal to or exceed the energy of propagating 

[I21 Gurvitz S A and Levinson Y B 1993 Phys. Rev. B 47 10578 
[I31 In the following considerations we neglect the u n i v e d  conductance Ructuations in the disordered banks of 

the contact The reason is that their conbibution to the QF'C conductance Ructuations is of the order of 
( n / N ) ( 2 e 2 / k )  << 2c'fh (see [9.14]). where n is the number of modes in the conskinion and N that 
in the bank. In a typical experimental situation the ratio njN can be estimated from above by the ratio 
of the maximum constriction width to the elastic scauering length in the bulk d l l ,  < 0.03 [15], As we 
shall see, the above contribution i s  much less than the chanceistic conductance fluctuations due to the 
mechanisms investigated in ow paper. 

This is consistent with the experimentally established slrong dependence of quality of the conductance 
quantization on the malerial, shape, length and intermode spacing in the constriction ([15,16]), which 
cannot be due to the universal conductance fluctuations in the bulk 2DEG. 

states; see below, 

[I41 Maslov D L, Bames C and Kirczenov G 1993 Phys. Rev. B 48 2543 
[I51 Timp G 1991 Mesoscopic Phenomena in SoEd.? ed B L Altshuler. P A Lee and R A Webb (Amsterdam: 

L161 Kcester S 1, Bolognesi C R, Hu E 1 Kmemer H and Rooks M J 1994 Phys. Rev. B 49 8514 
[I71 Imry I 1986 Directionr in Condensed Molter Physics ed G Grinstein and G Mazenko (Singapore: World 

[IS] Wu T-Y and Omura T 1962 Qumtum Theory of Scattering (Englewood Cliffs, NJ: RenticeHall) 
[I91 Lifshitz I M, Credeskul S A and Pastur L A 1988 Introduction in the 7beory of Disordered Systems (New 

[20] Patel N K. Nicholls J T, M&.Moreno L P e p w  M, Frost J E F. Ritchie D A and Jones G A C 1992 Phys. 

[21] Buckingham M J 1983 Noise in Electronic Devices d System (New York: EUis Honvood) 
[U] Zagoskin A M and Kulik I 0 1990 Sov. J,  Low Temp. Phys. 16 533 

(231 In fact, the value of AEL = 4.1 meV coincides with the distance directly measured in [201 between the first 

Elsevier) p 273 

Scientific) p IO1 

York: M'iley) 

Ret,. B 44 13549 

Bogxhek E N. Zagoskin A M and K u l i  1 0 1990 So". J. Low Temp. Phys, 16 796 

and second Uansvene modes, which ranged from 4.0 to 4.6 meV for different gate voltages. 


